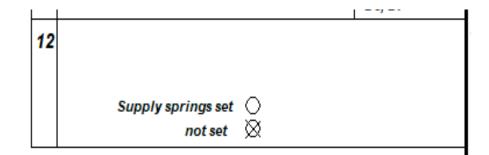
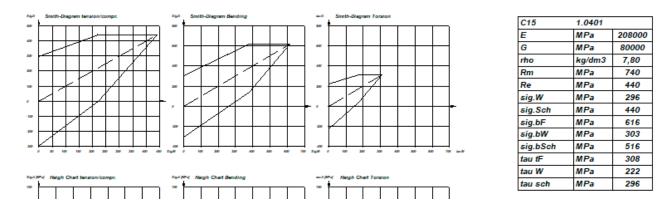

HEXAGON Newsletter 197

by Fritz Ruoss


FED1+, FED5, FED6, FED7, FED17: "Set Spring" Options in Production Drawing

🗹 springs not set >= L0	
🗹 Set test springs !	Supply remaining Springs not set 🗸 🗸
display setting length	$Ls = \frac{20,58}{\Box} Ls = Lc Ln L2$
📃 display Ld, P, aW, m	

Under "Edit/Production drawing" you can now click whether the texts "Set test springs!" and "Springs to be supplied not set may be longer than L0" should be displayed. If the springs are not set, you can hide the text.


		De, Di
1 2	Setting LengthLs = Lc	Springs to be supplied
	Set Test Springs !	not set may be longer than L0
	Supply remaining springs set $ \bigcirc $	uran LV
	not set 🔯	

material			×
material	C15	sensitivity criteria for stress concentration zone eta k 0,64	
material	1.0401	surface criteria ok 1.2	
elastic modulus E	208000	MPa strain ratio alpha 0 0,873	
shear modulus G	80000] MPa	
density	7,8	kg/dm²	
reference stress acc	cord		
O Maximum stress	theory	(phi=1)	
🔘 Maximum shear	theory	(phi=2)	
Maximum distorti	ion energy the	ory (phi=1.73)	
ОК	Cancel	Help Text Aux. Image MPa <> psi	

WL1+, TR1: Input Material Number

The entry of the material number was added to the material data input and saved as well (material number was previously taken from the WST1 database when the material was selected, but could not be entered or edited in the individual entry).

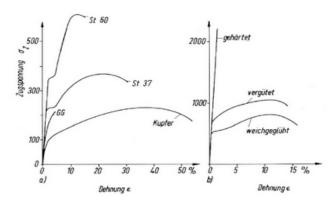
SR1/SR1+: Thread Strip Safety Warnings and Errors

There are 2 different warnings and error messages for the engaged thread length:

Warning: mtr<mmin Rm (S=0.x)

Error: mtr<mmin FM (S=0.x)

According to VDI 2230, the minimum engaged thread length should be so large that the screw breaks when overloaded and the thread remains undamaged. In this way, the bolt connection can be repaired more easily in the event of damage, simply by replacing the screw instead of, at best, by inserting a thread in the nut thread. The stripping strength of the thread must therefore be greater than the tensile strength Rm of the screw. Some people are therefore surprised that they receive a warning "mtr<mmin Rm" for a minimally loaded bolted joint.


There is now a small change: the warning is no longer displayed for a through-bolt joint with a nut. In this case, it doesn't matter whether the screw breaks or the thread is stripped. In the event of damage, screw and nut will be both replaced. Up to now, the warning was also displayed at TBJ if "Input nut material" was selected.

And another small change: The option "Calculate min. thread length engaged for FSmax" is now set by default (unless other default values have been set in a "null.sr1" file). You can see in Quick View how large the actual thread strip safety is in relation to the entered load.

ZAR1+, ZAR4, ZAR5, ZAR7, ZAR8: Material Coefficient ZW according to ISO 6336-2:2019

The following material pairs are used according to ISO 6336-2:2006:

- 1. Surface-hardened pinion with through-hardened gear
- 2. Hardened pinion with hardened gear
- Another material pair has been added in ISO 6336-2:2019:
- 3. Surface hardened pinion with ductile gear

3ild 3: Spannungs-Dehnungs-Diagramme /2/

Ductility is the property of a material to permanently deform under load before fracture. In the picture on the left, St60, St37 and copper are ductile. But not GG (cast iron). In the right picture, tempered or annealed steels are ductile, but hardened ones are not. Surface-hardened steels have a soft core and therefore deform ductilely.

A surface-hardened or inductively hardened gear is now also rated as a ductile gear in ZAR. For a Brinell hardness greater than 314 HB, ZW = 1.0, which should be the normal case for surface-hardened gears.

For combinations other than those according to ISO 6336-2:2019, ZW = 1.0 is set. Previously ZW was calculated for a case-hardened pinion with an inductively hardened gear according to case 1, which sometimes resulted in ZW < 1.

In the new version there is ZW1 for the pinion and ZW2 for the gear. The factor ZW calculated according to cases 2 and 3 applies only to the wheel (2) and not to the pinion (1), and in case 1 ZW1 (pinion) = 1 is set if less than 1 is calculated.

Also new in ZAR1+ is a warning if the selected material type and heat treatment do not match.

CALCULATION METHOD: ISO 6336		1	2	
Sigma-FG = SigmaFE * YNT * YdreIT * YRreIT * YX * YA	MPa	639	522	
Sigma-F0 = Ft /(b*mn) * YF * YS(g)* YB * YB * YDT	MPa	234	260	
Sigma-F = Sigma-F0 * KA * Kv * KFß * KFalfa	MPa	301	334	
SF = Sigma-FG / Sigma-F	SF	2,120	1,563	
0. 10 711-75-7 +70+ -15-11-11-11-11-11-11-11-11-11-11-11-11-	-			
Sigma-H0 = ZH * ZE * Zeps * Zß * sqrt(Ft /(d1*b)*(u+1)/u))	MPa	10.	36	
Sigma-HG = SigmaHlim * ZNT * ZL * Zv * ZR * ZW * ZX	MPa	2028	1630	
Sigma-HC = Sigma-H0 * sqrt(KA * Kv * KHß * KHalfa)	3 * KHalfa) MPa			
Sigma-H1,2 = (ZB,ZD) * Sigma-H0 * sqrt(KA*Kv*KHß*KHalfa)	MPa	1282	1237	
SH1,2 = Sigma-HG1,2 / Sigma-H1,2	SH	1,581	1,318	

driving			1	2				
Ρ	kV	/	1,717	1,717				
Τ	Nn	n	41000,0	439285,7				
n	1//	nin	0,4	0,0373				
MATERIAL 1 2								
Sig.Hlim		MPa	2244	1804				
Sigma F	E	MPa	666	601				
Sig.Flim	MPa		333	301				
Tempering:			case-hard.	ind.hard.				
Brinell		HB	621	532				

Y		1	2	Z		1	2		K FACTOR	? S	FORCE	ES .	
b eff	mm	175,00	170,00	b eff	mm	160	,00	7	KAH	1,00	Ft	N	26623
mn	mm	22,0	000	d1	mm	308,00		7	KA F	1,00	Ftw	N	26315
YF		1,494	1,423	u		10,7	714		Kv	1,00	Fxw	N	0
sFn	mm	46,600	52,101	ZD			1,00	7	KH-beta	1,43	Frw	N	10497
rhoF	mm	7,390	5,994	ZX		1,00	1,00		KF-beta	1,29	Fnw	N	28332
hFe	mm	26,194	29,536	ZW		1,00	1,00	7	KH-alfa	1,00			

ZM3: Tolerances added to Printout

ZM3 Synchronou	ıs belt drive	- t5_3	370.zm3							
<u>-</u> Eile <u>E</u> dit <u>V</u> iew <u>C</u> A	AD STL D	ataba	se D <u>o</u> cument	t O <u>L</u> E <u>H</u> elp						
Zahnriemenscheil Zahnriemenscheil				t OLE Help						
Zahnriemenscheibe 1 (P10 - T	(5 - 6)]	Zahnriemensch	eibe 2 (P60 - T5 - 6)				р X	5 (0,197*) 74
No. of teeth	z	Τ	10	No. of teeth		z		60	L	370 (14,567*)
pitch	p	mm	5,000	pitch		ρ	mm	5,000	28 Sr	40° 2.65
module		mm	1,592	module		m	mm	1,592	Sh	4,00
	m		<u> </u>	Bitch dismotor	Pitch diameter		mm	95,49		1.78
Pitch diameter	m d	mm	15,92	Tip diameter		d	and the		ht	1,78
Pitch diameter Tip diameter		mm mm	15,92			d d0	mm	94,64	hs	
	d	+								1,20
Tip diameter	d d0	mm	15,07	Tip diameter		d0	mm	94,64		1,20 2,20
Tip diameter height	d d0 hg	mm mm	15,07 1,25 ± 0,05 2,96 +0,05	Tip diameter height		d0 hg	mm mm	94,64 1,95 ± 0,05	hs π ra	1,20 2,20 0,40 0,40
Tip diameter height width width	d d0 hg br	mm mm mm	15,07 1,25 ± 0,05	Tip diameter height width width		d0 hg br	mm mm mm	94,64 1,95±0,05 3,32+0,05	hs rr ra Synchronous	1,20 2,20 0,40 0,40 belt chive
Tip diameter height width width Tooth angle	d d0 hg br bh 2beta	mm mm mm mm	15,07 1,25 ± 0,05 2,96 +0,05 2,31 40	Tip diameter height width width Tooth angle		d0 hg br bh 2beta	mm mm mm mm	94,64 1,95 ± 0,05 3,32 +0,05 1,91 40	hs π ra	1,20 2,20 0,40 0,40 belt drive 6,00
Tip diameter height width width Tooth angle fillet	d d0 hg br bh 2beta rb	mm mm mm mm °	15,07 1,25 ± 0,05 2,96 +0,05 2,31 40 0,40 -0,4	Tip diameter height width width Tooth angle fillet		d0 hg br bh 2beta rb	mm mm mm mm °	94,64 1,95 ± 0,05 3,32 +0,05 1,91 40 0,40 -0,4	hs π τa Synchronous i=2/21 e	1,20 2,20 0,40 0,40 belt drive 6,00 88,38 (3,480")
Tip diameter height width Width Tooth angle fillet fillet	d d0 hg br bh 2beta rb rt	mm mm mm mm • mm	15,07 1,25 ± 0,05 2,96 +0,05 2,31 40 0,40 -0,4 0,60 ± 0,05	Tip diameter height width width Tooth angle fillet fillet		d0 hg br bh 2beta rb rt	mm mm mm mm ° mm mm	94,64 1,95 ± 0,05 3,32 +0,05 1,91 40 0,40 -0,4 0,60 ± 0,05	hs π ra Synchronous i=2/21 e alpha	1.20 2.20 0.40 0.40 belt chive 5.00 85.38 (3.480") 26.8°
Tip diameter height width Tooth angle fillet fillet Face width	d d0 hg br bh 2beta rb rt bfmin	mm mm mm mm • • mm mm mm	15,07 1,25 ± 0,05 2,36 ± 0,05 2,31 40 0,40 ± 0,4 0,60 ± 0,05 7,50	Tip diameter height width Tooth angle fillet fillet Face width		d0 hg br bh 2beta rb rt bfmin	mm mm mm mm • • mm mm mm	94,64 1,95±0,05 3,32+0,05 1,91 40 0,40-0,4 0,60±0,05 10,00	hs n ra synchronous i≈2/z1 e alpha beta	1.20 2.20 0.40 0.40 belt drive 6.00 88.38 (3.480 ⁻⁷) 28.8° 126.5 ⁻⁵
Tip diameter height width Width Tooth angle fillet fillet	d d0 hg br bh 2beta rb rt	mm mm mm mm • mm	15,07 1,25 ± 0,05 2,96 +0,05 2,31 40 0,40 -0,4 0,60 ± 0,05	Tip diameter height width width Tooth angle fillet fillet		d0 hg br bh 2beta rb rt	mm mm mm mm ° mm mm	94,64 1,95 ± 0,05 3,32 +0,05 1,91 40 0,40 -0,4 0,60 ± 0,05	hs π ra Synchronous i=2/21 e alpha	1.20 2.20 0.40 0.40 belt drive 5.00 85,38 (3.480°) 26.8°

The dimensions hg, br, bh, rb, rt are now printed out with tolerances in quick views and printouts. Although the tolerances had already been calculated and taken into account when generating the profile (min/max), they were not displayed in the quick views until now.

ZM3	Synchronous belt drive	×
	P10 - T5 - 6	
	height hg 1.25 mm	< max < < min
	width br 2,985 mm	< max < < min
	fillet (top) rt 0,6 mm	< max < < min
	fillet (bottom) rb 0,2 mm	< max < < min
	OK Cancel Help	

HEXAGON PRICE LIST 2023-03-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.7 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V22.3 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V21.7 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 8.0 Disk Springs	430
FED5 Version 17.3 Conical Compression Springs	741
FED6 Version 18.3 Nonlinear Cylindrical Compression Springs	634
FED7 Version 15.3 Nonlinear Compression Springs	660
FED8 Version 7.5 Torsion Bar	317
FED9+ Version 7.0 Spiral Spring incl. production drawing, animation, Quick input	490
FED10 Version 4.5 Leaf Spring	500
	210
FED11 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring FED13 Version 4.3 Wave Spring Washers	
	228
FED14 Version 2.7 Helical Wave Spring	395
FED15 Version 1.7 Leaf Spring (simple)	180
FED16 Version 1.4 Constant Force Spring	225
FED17 Version 2.3 Magazine Spring	725
FED19 Version 1.0 Buffer Spring	620
GEO1+ V7.5 Cross Section Calculation incl. profile database	294
GEO2 V3.3 Rotation Bodies	194
GEO3 V4.0 Hertzian Pressure	205
GEO4 V5.3 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.2 Eccentric Gear software	550,-
HPGL Manager Version 9.1	383
LG1 V7.0 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V24.8 Bolted Joint Design	640
SR1+ V24.8 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.5 Girder Calculation	757
WL1+ V21.9 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V11.4 Involute Splines to DIN 5480	250
WN2+ V11.4 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 6.1 Involute Splines to ANSI B 92.1	276
WN5 V 6.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.4 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.3 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.2 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.9 Spur and Helical Gears	1115

ZAR2 V8.2 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V10.5 Cylindrical Worm Gears	620
ZAR4 V6.4 Non-circular Spur Gears	1610
ZAR5 V12.6 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.5 Plus Planetary Gears	1380
ZAR8 V2.1 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.7 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320
ZM3.V1.1 Synchronous Belt Drive Design	224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	,
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+	, 8,500
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1	, 4,900
SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	-1200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8,	4,985
FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17, FED19)	
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

U									
Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
		1 12.2							

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.

- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.

- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update Windows: 40 EUR, Update Win64: 50 EUR Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment. Fee for additional key codes: 40 EUR