HEXAGON Newsletter 196

by Fritz Ruoss

FED1+,2+,3+,5,6,7,8,17: Fatigue strength coefficient and life expectation

EN 13906-1 contains Goodman diagrams as fatigue strength diagrams for 10 million load cycles and fatigue strength diagrams for 1 million load cycles. A Goodman diagram as a fatigue strength diagram for 1 million load cycles is available for cold-drawn springs made from patent-drawn spring wire of grade DH or SH, shot-peened, and from oil-tempered wire of grade TD or FD (TDC or FDC), shot-peened, and for hot-formed springs made from hot-rolled EN steels 10089 with ground or peeled surface, shot blasted. With these fatigue strength diagrams, the permissible variation of stress between two loads for 1 million load cycles are approx. 25% higher than for 10 million load cycles. This means that if the springs are overloaded by 25% of the permissible fatigue strength value for >=1E7 cycles, they will fail after 1 million load cycles. It is generally the case that the permissible overload is lower the higher tensile strength, hardness and brittleness of the material. This is also confirmed by the new Goodman diagrams from the IGF project 19693BR for 1E6 and 1E7 load changes. A new field was added to the materials database fedwst.dbf for the individual adjustment of the fatigue strength: E6 E7 is the quotient of the permissible shear stress at 1 million (1E6) and at 10 million (1E7) load cycles. According to EN 13906-1, this factor is 1.25 for all fatigue strength diagrams shown there, i.e. the permissible variation of stress between two loads for 1 million load cycles is 25% higher than for fatigue strength safety (>=10 million load cycles). With the new Goodman diagrams according to IGF 19693 and VDFI L-001, this fatigue strength factor is somewhat smaller: E6_E7=1.15 for 1.4310 and 1.4568, E6_E7=1.1 for DH, VDSiCr and VDSiCrV. If you want to enter your own fatigue strength diagrams into the database, you can use this factor E6_E7 to define the fatigue strength range. The factor E6_E7 is also included in the service life calculation: If, for example, the variation of stress between two loads taukh is 20% above the value from the fatigue strength diagram, this results in a life expectation between 1 million and 10 million load cycles with E6 E7=1.25. For E6 E7=1.15, the life expectation is less than 1 million load cycles. If the fatigue strength factor E6_E7 deviates from the default value of 1.25, it is now listed in the Goodman diagram.

FED1+,2+,3+,5,6,7,8,17: FEDWST.DBF with data field E6_E7 added

	KTU1	KDTU1	KDTG	DMIN	DMAX	TMAX	INFO	NO	E6_E7
0	830	70	0,68	0,7	8	160	E6_E7 12/22	50	1,1
0	980	70	0,48	2	6	160	E6_E7 12/22	51	1,1

Since December 1, 2022, the materials database fedwst.dbf contains an additional field E6_E7 with the fatigue strength factor $E6_E7 = tauhzE6 (N=1E6) / tauhzE7 (N=1E7)$. In the materials according to EN 13906-1, this factor is calculated with 1.25. If the new field E6_E7 is empty, 1.25 is used. Ultra-high-tempered materials are more sensitive to overstress, so the factor for the following materials was set to 1.1: Oteva 70, 74, 75, 76, 90, 91, 96, 100, 101, Garba 177.

Goodman diagram Oteva 75 SC peeled and shot-peened E6_E7=1.1 (from 12/22) and E6_E7=1.25 (old) The modified fatigue strength factor only has a practical effect on the service life calculation here if the prestress is small (tauk1<300MPa) and the stress variation between two loads is very high (taukh>900 MPa). With a higher preload (tauk1>300) the stroke is limited by the (static) permissible shear stress, and with a smaller stroke stress (taukh<900) the spring is fatigue strength safe (>=1E7 cycles) for tauk1<300 MPa (numerical values only apply to this example of Oteva 75, d =3mm, shot peened).

FED2+: Setting tau/sigma for Goodman diagram

The Goodman diagrams for bending stress in the loops are converted from the Goodman diagrams for torsional stress with a factor tau/sigma. For helical compression springs, tauz=56% Rm according to EN 13906-1, for tension springs, tauz=45% Rm according to EN 13906-2, for torsion springs, sigmaz= 70% Rm according to EN 13906-1. In FED3+, therefore, tau/sigma = 0.56Rm/0.7Rm = 0.8. Up to now, tau/sigma=0.5Rm/0.7Rm = 0.715 was used for the loops stress of the tension springs. With the setting tauo=tauz=0.56Rm then sigmaoz=tauoz/0.715 = 0.56Rm/0.715 = 0.78Rm. According to EN 13906-3, the permissible bending stress for torsion springs is 0.7 Rm (in general mechanical engineering, the permissible bending stress is Sigma = 1.0 Rm). Now you can set under "Calculation method" whether you want to display the Goodman diagram for loop stress as before, or with the conversion factor tau/sigma = 0.56Rm/0.7Rm = 0.8 as for torsion springs. In this setting, sigmaoz=sigmaz is also the same for tauoz=tauz. In the new setting, the permissible bending stress Sigma are somewhat smaller, as is the calculated life expectation (loop).

SR1/SR1+: Enter material data for nut thread

Previously, the material for the bolt and nut had to be selected from the database. Now you can also enter the material data individually without having to expand the database. However, there is not enough space for this in the Quick input, so you have to use the input window under "Edit\Nut".

nut d = 12 mm		×
Allowance class 6 H 🗸	tapped thread joint (TTJ) thread depth 20 mm < bore depth 25 mm <	
 bolt-nut type ● tapped thread joint (TTJ) ○ through-bolt joint w/ nut (TBJ) ○ TTJ + dw]
material 1.1192 Cq 45 (V) pG 770 MPa E 205000 MPa Re 430 MPa Rm 700 MPa Rm 700		
Input Material ~ 2 (mat_p_2.dbf) ~		
OK Cancel Help Text Au	ux. Image mm <> inch Calc	

WN2+: ISO tolerance A..V instead of A..S

In WN2+ you could extend the range of the ISO tolerances from "F..M" (according to DIN 5480) to ISO tolerances "A..S" for the hub profile. Now the range has been extended again by T,U,V, to tolerances "A..V" instead of "A..S".

2+ Gear qual	ity DIN 5480						×
] Edit Ase1, As	ii1, Ase2, Asi2						
shaft			hub				
To	lerance series	8 ~		Tolerance se	ries 9	~	
b	olerance zone	m v		tolerance zo	one V	✓ ☑ AV	
Ase1	0,042	mm	jt min = -0,182 mm	-Ase2	0,14	mm	
Asi1	-0,021	mm	jt max = -0,029 mm	-Asi2	0,05	mm	
	OK	Cancel	Help Text			Calc	
	2+ Gear qual Edit Ase1, As shaft To t Ase1 Asi1	2+ Gear quality DIN 5480 Edit Ase1, Asi1, Ase2, Asi2 shaft Tolerance series tolerance zone Ase1 0,042 Asi1 -0,021 OK	2+ Gear quality DIN 5480 Edit Ase1, Asi1, Ase2, Asi2 shaft Tolerance series 8 ~ tolerance zone m ~ Ase1 0,042 mm Asi1 -0,021 mm	2+ Gear quality DIN 5480 Edit Ase1, Asi1, Ase2, Asi2 shaft Tolerance series 8 tolerance zone m Ase1 0,042 mm it min = -0,182 mm Asi1 -0,021 mm it max = -0,029 mm OK Cancel Help Text	2+ Gear quality DIN 5480 Edit Ase1, Asi1, Ase2, Asi2 shaft Tolerance series 8 tolerance zone m Ase1 0,042 mm it min = -0,182 mm -Ase2 Asi1 -0,021 mm it max = -0,029 mm -Asi2 OK Cancel Help Text	2+ Gear quality DIN 5480 E dit Ase1, Asi1, Ase2, Asi2 shaft Tolerance series 8 tolerance zone m Ase1 0,042 mm it min = -0,182 mm -Ase2 0,14 Asi1 -0,021 mm it max = -0,029 mm -Asi2 0,05 OK Cancel Help Text	2+ Gear quality DIN 5480 Edit Ase1, Asi1, Ase2, Asi2 shaft Tolerance series tolerance series tolerance zone M Ase1 0.042 mm it min = -0,182 mm -Asi1 -0.021 M Edit Ase1 0K Cancel Help Text

ZAR3+: Tooth height factors with tooth profile drawing

ZAR3+ Worm Gear Design X						
$ \begin{bmatrix} da, df = const & worm & worm wheel \\ Addendum hfP0/m=ha0/m & 1.5 & 0.5 & < \\ Dedendum haP0/m=hf0/m & 0.7 & 1.7 & < \\ Root fillet radius raP0/m=rf/m & 0.1 & 0.1 & < \\ Fillet radius rfP0/m=ra/m & 0 & 0 & < \\ Profile shift x & 0.5 & 0.5 & < \\ Profile shift x & 0.5 & 0.5 & < \\ de2 = da2 + 2 m & ? \\ \end{bmatrix} $ $ \begin{bmatrix} voth alignment \\ \odot right hand \\ \odot leit hand \\ \odot leit hand \\ \odot leit hand \\ \odot leit hand \\ \odot Calculation acc. DIN 3996 ? \\ mean roughness worm Ra1 & 1.6 & \mu m & < \\ \hline M & Cancel & ha, hf, ff ? & Calc profile & Calculation & Calc$	ZAR3+ Worm Gear Desigr	ı				\times
$ \boxed{da,df = const worm worm wheel} \\ Addendum hfP0/m=ha0/m 1.5 0.5 < \\ Dedendum haP0/m=hf0/m 0.7 1.7 < \\ \hline Dedendum haP0/m=hf0/m 0.7 1.7 < \\ \hline Calculation acc. DIN 3975 \\ \hline Calculation acc. DIN 3996 ? \\ \\ mean roughness worm Ra1 1.6 \\ \mu m < \\ \hline Calculation acc. DIN 3996 ? \\ \\ \hline Calculation acc. D$						
Addendum hfP0/m=ha0/m 1.5 0.5 < ● 2 I (I) Dedendum haP0/m=hf0/m 0.7 1.7 < ○ ZA (A) Proof fillet radius raP0/m=rf/m 0.1 0.1 < ○ ZN (N) Fillet radius rfP0/m=ra/m 0 0 < ○ ZN (N) Fillet radius rfP0/m=ra/m 0 0 < ○ ZN (N) Profile shift x 0.5 0.5 tooth alignment @ right hand ○ left hand ○ left hand ○ left hand ØK Cancel ha, hf, rf ? Calc profile Calc	🗹 da,df = con:	st worm	worm wheel	Γ	Worm flank form DIN 3975	
Dedendum haP0/m=hf0/m 0.7 1.7 $<$ $OZA [A]$ Root fillet radius raP0/m=rf/m 0.1 0.1 $<$ $ZK (K)$ Fillet radius rfP0/m=ra/m 0 0 $<$ $ZH (C)$ Profile shift x $\cdot 0.5$ 0.5 $<$ tooth alignment \bullet right hand \bullet left hand \bullet left hand \bullet Calculation acc. DIN 3996 ? mean roughness worm Ra1 1.6 μ m $<$	Addendum hfP0/m	=ha0/m 1,5	0,5	<	● ZI (I)	
Root fillet radius raP0/m=rf/m 0.1 0.1 Fillet radius rfP0/m=ra/m 0 < 2N (N) Profile shift x -0.5 0.5 tooth alignment @ right hand Ieft hand Ieft hand de2 = da2 + 2 m ? Calculation acc. DIN 3996 ? mean roughness worm Ra1 1.6 µm < OK Cancel ha, hf, rf ? Calc profile Calc	Dedendum haP0/m	n=hf0/m 0,7	1,7	<		
Fillet radius rd ofm mm o o c Fillet radius rfP0/m=ra/m 0 c o Profile shift x -0,5 0,5 c tooth alignment ight hand ight hand ight hand ielt hand de2 = da2 + 2 m ? Calculation acc. DIN 3996 ? mean roughness worm Ra1 1,6 μm OK Cancel ha, hf, rf ? Calc profile Calc	Boot fillet radius raP0.	/m=rf/m 0.1	0.1			
Profile shift x -0.5 0.5 (Profile shift x -0.5 0.5 (de2 = da2 + 2 m ? Calculation acc. DIN 3996 ? mean roughness worm Ra1 1.6 µm < OK Cancel ha, hf, rf ? Calc profile Calc	Fillek ve diver s(DD)				О ZH (C)	
Profile shift x -0,5 0,5 < tooth alignment i right hand left hand de2 = da2 + 2 m Calculation acc. DIN 3996 ? mean roughness worm Ra1 1,6 µm < OK Cancel ha, hf, rf ? Calc profile Calc	Fillet radius mF0/					
de2 = da2 + 2 m Calculation acc. DIN 3996 ? mean roughness worm Ra1 1.6 μm < OK Cancel ha, hf, rf ? Calc profile Calc	Profi	e shift x -0,5	0,5	< [tooth alignment	
de2 = da2 + 2 m ✓ ? ✓ Calculation acc. DIN 3996 ? mean roughness worm Ra1 1,6 µm < OK Cancel ha, hf, rf ? Calc profile Calc					Oleft hand	
✓ Calculation acc. DIN 3996 ? mean roughness worm Ra1 1,6 μm < OK Cancel ha, hf, rf ? Calc profile Calc	de2 = da2 + 2 m		~	?	0	
Calculation acc. DIN 3595 ? mean roughness worm Ra1 1,6 μm < OK Cancel ha, hf, rf ? Calc profile Calc				,	Colouiation and DIN 2000 2	
OK Cancel ha, hf, rf ? Calc profile Calc				1		
OK Cancel ha, hf, rf ? Calc profile Calc				m	ean roughness worm hat 1,6 μm K	
OK Cancel ha, hf, rf ? Calc profile Calc						
	OK	Cancel		ha, hf, rf ?	Calc profile Calc	

The entered tooth height factors are calculated with "Calc Profile" and a tooth shape drawing of the worm and worm wheel is displayed in the background window now.

Tip: Back up databases for updates

If you have expanded or changed databases yourself, you must back them up with updates. Then decide whether to continue using the old databases with the new version or to replace or update them with the new data. Even if you have not changed any databases, it can make sense to back up the old status. How so? If, for example, material properties have been changed and you open an old calculation, a different result is displayed than it was then. Just save the old dbf files in a folder, e.g. dbf2022. You can then easily switch between old and new database files under File\Settings\Directories.

Tip: Change setting "copy dbf->Temp" and databases for network versions

For network versions there is a setting "copy dbf->Temp" under File\Settings\Directories. With this setting, all dbf files are copied to the temporary directory when the program starts. The program usually runs faster because there is no more network access. Requirement: The temporary directory must be configured to the local computer, e.g. "c:\temp". This setting has proven its worth, especially in the home office, when working at home with the floating license in the company. It has now turned out that this setting not only has advantages: You cannot change any databases in this setting because only the dbf file in the temporary directory is changed. If you want and are allowed to change databases, you should deselect this option, save the settings, exit the program and restart.

Tip: cfg configuration in "C:\HEXAGON\"

When the program starts, the configuration is loaded from the working directory. The working directory can be found by right-clicking on the program icon under "Properties", "Run in". A new cfg file is saved or overwritten by pressing the "Save" button in the program under "File\Settings". If no cfg file is found in the working directory, the program searches under "C:\HEXAGON\". If there is no cfg file there either, it will start without configuration. This works fine if all files are in the same folder. If the program is started by clicking on a data file, then the working directory is the location of this data file. A cfg file is usually not found here, then the configuration is loaded from "C:\HEXAGON".

If you use several versions of a program, e.g. a German and an English version or a single-user license and a floating license, you need a separate cfg configuration in the working directory for each version. Otherwise the cfg file is always loaded from "C:\HEXAGON".

Words of the year 2022

Ukraine - war of aggression - sanctions - energy crisis - inflation - gas price cap - climate change.

Relegated of the year 2022:

Corona - killer variant - booster vaccination - isolation requirement - mask requirement - vaccination requirement. Corona has lost its terror among the majority of the population worldwide. After almost half of the population in Germany and other countries has a proven corona infection behind them, expert advice can be dispensed with. Own experience is the best expertise. China probably still has an infection with the corona virus ahead of it. From a western point of view, it is astonishing that there is no compulsory corona vaccination in authoritarian China. The Republic of Austria and the Federal Republic of Germany acted more dictatorially than the People's Republic of China.

HEXAGON PRICE LIST 2023-01-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.6 Helical Compression Springs incl. spring database, animation, relax., 3D	695
FED2+ V22.3 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V21 7 Helical Torsion Springs incl. prod drawing animation 3D rectang wire	600 -
FED4 Version 8 0 Disk Springs	430 -
FED5 Version 17.2 Conical Compression Springs	7/1 -
EED6 Version 18.2 Nonlinear Cylindrical Compression Springs	624
FED7 Version 15.2 Nonlinear Compression Springs	660
FED/ Version 7.5 Tersion Der	000
FED8 Version 7.5 Torsion Bar	317
FED9+ Version 7.0 Spiral Spring Incl. production drawing, animation, Quick Input	490
FED10 Version 4.5 Leaf Spring	500
FED11 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	220
FED13 Version 4.3 Wave Spring Washers	228
FED14 Version 2.7 Helical Wave Spring	395
FED15 Version 1.7 Leaf Spring (simple)	180
FED16 Version 1.4 Constant Force Spring	225
FED17 Version 2.3 Magazine Spring	725
FED19 Version 1.0 Buffer Spring	620
GEO1+ V7.5 Cross Section Calculation incl. profile database	294
GEO2 V3.3 Rotation Bodies	194
GEO3 V4.0 Hertzian Pressure	205
GEO4 V5.3 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1 0 Pinch Roll Overrunning Clutch Software	232 -
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219 -
GR1 V2 2 Gear construction kit software	185 -
GR2 V1 2 Eccentric Gear software	550 -
HPGI Manager Version 9.1	383 -
I G1 \/7 0 Poll Contact Boarings	206
LC1 V7.0 Noi-Contact Dealings	290
SP1 V24 7 Polted Joint Decign	400
SR1 V24.7 Dolled Joint Design incl. Flance calculation	640
SR1+ V24.7 Bolled Joint Design Incl. Flange calculation	750
TOL 1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
IR1 V6.4 Girder Calculation	/5/
WL1+ V21.8 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V11.4 Involute Splines to DIN 5480	250
WN2+ V11.4 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 6.1 Involute Splines to ANSI B 92.1	276
WN5 V 6.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.4 Involute Splines to DIN 5482	260 -
WN11 V 2.0 Woodruff Key Joints	240 -
WN12 V 1 2 Face Splines	2-56 -
WN13 V 1 0 Polygon Profiles PnG	230
WN14 V 1.0 Polygon Profiles PhO	200
WINTER V 1.0 FUILYOUT FTUTTES FTUE	230
WINKE V 2.3 Involute optimes – dimensions, graphic, measure	3/5
WOTA V 40.0 Meterial Detabase	230
VVSTT V TU.2 Material Database	235
ZAR1+ V 26.8 Spur and Helical Gears	1115

ZAR2 V8.2 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V10.5 Cylindrical Worm Gears	620
ZAR4 V6.3 Non-circular Spur Gears	1610
ZAR5 V12.5 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.4 Plus Planetary Gears	1380
ZAR8 V2.0 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.7 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320
ZM3.V1.0 Synchronous Belt Drive Design	224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,	4 000
SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	-1200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8,	4,985
FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17, FED19)	-
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.

- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.

- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update Windows: 40 EUR, Update Win64: 50 EUR Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment. Fee for additional key codes: 40 EUR