
by Fritz Ruoss

FED1+,2+,3+,17: Haigh Diagram

In addition to the modified Haigh-Goodman diagram, there is now also a "real" Haigh diagram, even if this is not really relevant for helical compression springs.

Smith chart and Haigh chart are for alternating and pulsating loads, the mean stress taukm is plotted on the x-axis and the stress amplitude taukA is plotted on the y-axis.

Goodman diagram and Haigh-Goodman diagram are only for pulsating loads, the x-axis shows the prestress tauk1 and the y-axis shows the lifting stress taukh.

The calculation of helical compression springs according to EN 13906 and HEXAGON FED only considers pulsating loads (if the load changes, a firmly clamped spring would switch between compression and tension). Therefore the left side of the Haigh diagram is blank here.

This Haigh diagram is used in a research project by the Association of the German Spring Industry to determine new fatigue strength values at the TU Ilmenau, so you can compare the Haigh diagrams used there with those in HEXAGON FED.

The spring length L1 for the preloaded spring is usually fixed, while the stroke (sh=L2-L1) can be constant or variable. An average spring length Lm with an average shear stress taukm is rather impractical for helical compression springs. These stresses used in Smith and Haigh diagrams are easy to convert:

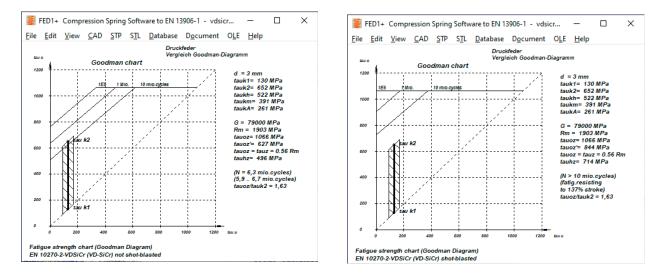
mean stress taukm = (tauk2+tauk1)/2

Stress amplitude taukA = (tauk2 - tauk1)/2 = tauh/2

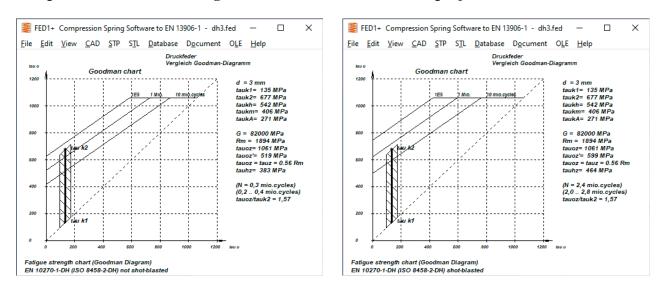
In the case of non-linear compression springs, the mean stress relates to the mean spring force, but not to the mean spring length or half the stroke.

FED1+,2+,3+,5,6,7,17 Tip: Goodman Diagram Setting tauoz = tauz

and ogaing, had ogaing, had noon hang		
Goodman diagram tauoz	tauoz = tauz = 0.56 Rm	\sim

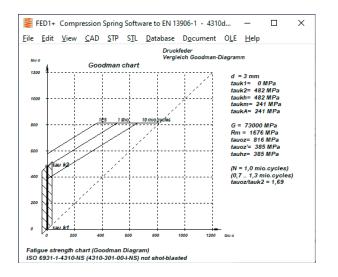

Theoretically, the upper horizontal line in the Goodman diagram should be the allowable (static) shear stress tauz because the allowable deflection=0 here. In fact, this value is usually lower in the Goodman diagrams in EN 13906-1. But you can set "tauoz=tauz" under "Edit\Calculation method", then the upper stress in the Goodman diagram is the permissible shear stress tauz. The newly determined Goodman diagrams for DH and VDSiCr from the research project IGF 19693 BR by VDFI and TU Ilmenau are usually fairly close in this setting.

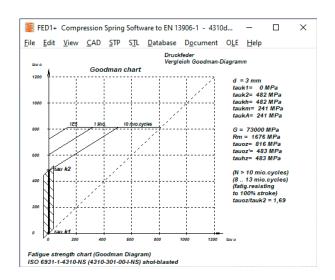
Comparison of Goodman diagrams EN 13906-1 and research project IGF 19693 BR


In EN 13906-1 there are Goodman diagrams of DH according to EN 10270-1, TD according to EN 10270-2, VD according to EN10270-2, 1.4310 according to EN 10270-3, 1.4568 according to EN 10270-3.

The research project examines: FDSiCr, VDSiCr, VDSiCrV, DH, 1.4310, 1.4568. TD and VD are not examined. Strange that FDSiCr is tested for fatigue strength, although according to EN 10270 this material is only intended for static applications. According to the determined, almost identical fatigue strength diagrams from IGF 19693, FDSiCr and VDSiCr are equally suitable for dynamic stress. But that may be coincidence, the only difference between FD and VD wires might be that VD is tested for surface cracks to keep the risk of crack formation and crack propagation to fatigue failure low.

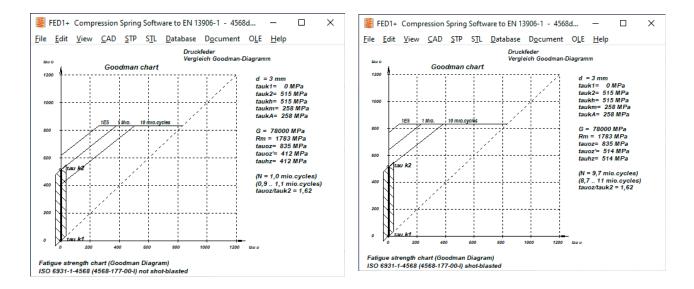
It is also strange that the newly determined Goodman diagrams of VDSiCr are compared with the old ones of VD (without SiCr). However, the newly determined Goodman diagrams for VDSiCr from 2021 are comparable and almost identical to those from the Bosch Kraftfahrtechnisches Taschenbuch from 1995, which are used in HEXAGON FED.


The fatigue strengths (N=1E7) of VDSiCr from HEXAGON FED (with the setting tauoz=tauz) are almost identical to the newly determined IGF data, both shot-peened and unpeened. However, there are clear differences in the fatigue strength (N=1E6), which means that the calculated service life for overstressed springs is significantly lower.

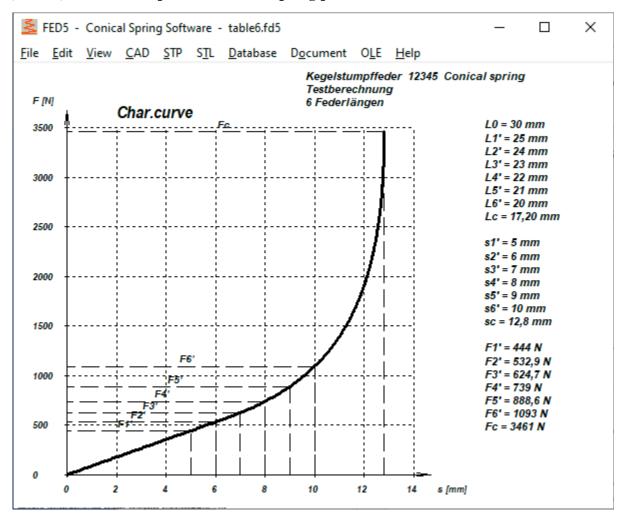


Comparison of Goodman diagrams EN 13906-1 and research project IGF 19693 BR

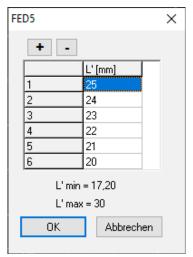
DH: In the case of unblasted spring steel wire DH, the permissible lifting stress for tauk1=0 is somewhat lower, but greater for higher preload than according to EN 13906. Shot peening increases the permissible lifting stress by almost 100%. According to EN 13906, on the other hand, by only 20 to 25%. Thus, for DH, the permissible lifting stress for shot-peened springs is more than 50% higher than according to EN 13906.


1.4310: In the case of spring steel wire 1.4310, it is not mentioned whether the type 1.4310-NS or 1.4310-HS was examined. Because the allowable shear stress (upper horizontal) in the Goodman diagram is so low, it can only be NS. For d=3mm one can read tauzul= 770 MPa. However, the permissible shear stress (tauzul=0.56Rm) at d=3mm is for ISO 6931-1-4310-NS = 868 .. 1002 MPa, and for 4310-HS even 952 .. 1098 MPa. The permissible shear stress in the new Goodman diagram is therefore even worse than for 1.4310-NS. The permissible lifting stresses for springs that are not shot-peened are lower for tauk1=0 than according to EN 13906- (320 instead of 380 MPa for d=3mm) and higher from tauk1=300MPa. For shot-peened springs, on the other hand, the newly determined permissible shear stresses are all higher than before.

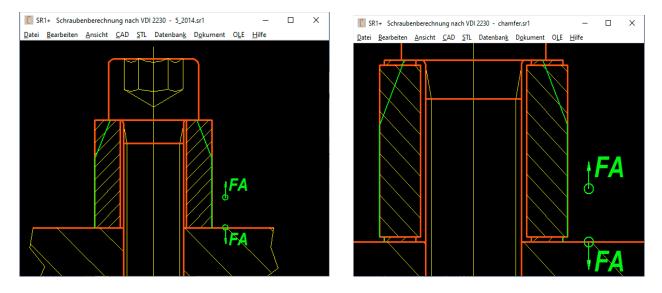
Comparison of Goodman diagrams EN 13906-1 and research project IGF 19693 BR


1.4568: Also for spring steel wire of type 1.4568, not shot-peened, the newly determined fatigue strength values are much lower than according to EN 13906-1 (for d=3mm tauhz=270 instead of 400 MPa at tauu=0). The permissible shear stress (tauz=865MPa at d=3mm) is also too low compared to ISO 6931-1-4568 with 1750*0.56= 980 MPa (after precipitation hardening). On the other hand, the fatigue strength values after shot peening are somewhat higher than in HEXAGON FED (for d=3mm tauhz=540 instead of 514 MPa at tauu=0). Compared to the unpeened spring, the permissible stroke stress was doubled by shot peening (540 instead of 270 MPa at tauu=0).

FED: fatigue strength (1E7 cycles), fatigue strength (1E6 cycles), service life


The comparison of the fatigue strength diagram for 10 million load cycles and the fatigue strength diagram for 1 million load cycles according to IGF differs significantly from the Goodman diagrams from EN 13906. While the permissible stress amplitude according to EN 13906-1 for 1E6 load cycles was approx. 25% higher than for 1E7, according to the new Goodman diagrams it is only between 10 and 15%. Conversely, for the calculation of the number of load cycles and service life, this means that these become significantly lower if the permissible fatigue variation of stress is exceeded. It is therefore planned to add a field 1E6_1E7 to the spring material database fedwst.dbf, in which the quotient tauhzul, 1E6 / tauhzul, 1E7 can be entered.

fedwst.dbf	Werkstof	f											- 🗆	×
atei <u>A</u> nsich	t <u>H</u> ilfe													
H	•	۲	M	Suchen	Weitersuche	m 102 /104	OK	Abbrechen						
DTU1	DTG	K	.TO1	KDT01	KTU1	KDTU1	KDTG	DMIN	DMAX	TMAX	INFO	NB	E7_E6	
19)	0,9	1020	180	760	70	0,9	0,5	10	160	3/16: E	10	1,	1
()	0	890	286	640	444	0,69	14,5	100	80	2004:Rm,4/18:DR	11		0
()	0	890	286	640	444	0,69	14,5	100	80	2004:Rm,4/18:DR	12		0
()	0	890	286	640	444	0,69	14,5	100	80	2004:Rm,4/18:DR	13		0
()	0	890	286	640	444	0,69	10	100	80	2004:Rm,4/18:DR	14		0
()	0	890	286	640	444	0,69	10	100	80	2004:Rm,4/18:DR	15		0
(0	890	286	640	444	0,69	10	100	80	2004:Rm,4/18:DR	16		0



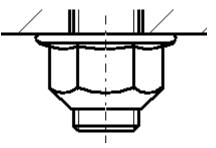
FED5, FED6, FED7: List up to 6 additional spring positions

Similar to FED1+, you can now also enter additional spring lengths in FED5 and FED6 and FED7, for which the spring force is drawn in an additional spring characteristic curve (View\Spring characteristic\F'-s').

SR1/SR1+: Split clamping plates with chamfers or countersunk

If a countersink or chamfer is to be taken into account for the calculation of surface pressure and elastic compliance, the clamp piece with countersink or chamfer is made into two cylindrical clamping plates: one with a countersink and one without. Or even three plates are created from one clamping plate if chamfers or countersinks are to be taken into account on both sides. Starting from a 45° chamfer, there is a new clamping plate with the height of the chamfer, the old clamping plate is reduced by the same height. With a 45° chamfer on the bore diameter, Di increases by 2 x chamfer height, with a 45° chamfer on the outside diameter, De decreases by 2 x chamfer height. This is now also possible automatically under "Edit\Clamping plates" "Bevel, countersink".

clamping plates	×
01: de= 78,0 di= 15,5 l= 1,00 Kolben o 02: de= 80,0 di= 13,5 l= 40,00 Kolben	New
03: de= 78,0 di= 15,5 l= 1,00 Kolben u	Modify
	Insert
	Delete
	Drill hole
	amfer, countersunk 1 -
OK Cancel Help Aux. Image Error Messages	


This splitting of the clamping parts is disadvantageous when calculating the amount of setting fz, because the new clamping plates have no separating surfaces. Therefore, you can now enter the number of real clamping plates under Edit\Load. This input is temporary and is only used to calculate the setting amount fz.

loss of preload by embedding	VDI 2230-1:2015 - suggestion	s for steel materials
no. clamped plates 1	< Rz < 10 μm	 VDI 2230 (Release 1986)
amount of embedding fz	 10 <= Rz < 40 µm 	 Vademecum (interface area grinded)
0,011 mm	40 <= Rz < 160 μm	Vademecum (interface area lathed)
reqd. residual clamping force —		

SR1/SR1+: pressure database (pressung dbf)

The German and English versions of the pressung.dbf database with material data for the clamping plates differ and are not interchangeable. Please note if you use the German and English versions. In the English version, an error has now been found in the modulus of elasticity of the material "SF Cu F24", this must be 123000 MPa, not 12300. Please correct under "Database\Material Plates\Nut\Base data 0 (pressung.dbf)".

SR1/SR1+ Tip: Input tightening torque of friction nuts

When using self-locking nuts with MApre friction torque, entering torque tolerances is unfortunately not as easy as with normal nuts.

SR1+ tightening procedure					×
⊂alculation base FM, MA ○ VDI 2230 - 1986 ● VDI 2230-1:2015 ■ Bolt driven	tightening procedure	0,5 <			<
O Nut driven					
	yield point factor for tightening tightening torque MA,max (129 lim.) mbly prestress. force FM,max (69676 lim.)	0,33 47,27354 Ni 21002,08 N	< m N	μG = 0,1 ± 0% μK = 0,1 ± 0% MA = 45,01 Nm ± 5,0 FM = 13655 ± 6,851 % alpha = 13,53 ± 6,851 MA pre = 12 Nm	6
MA min alpha A Tol MA % MA,min FM,min	Tightening Factor alpha A tolerance torque MAtol/MA,nom min. tightening torque MA,min min. assembly prestress. force FM,min	42,75	< ? % Nm N	Calc N <> II Help Te Cance	xt
MA = 45,01 Nm ±	5,0 %	Sigma 🕻	3	< 0K	

For self-locking nuts with friction torque, the yield strength factor nueRp must be entered; MA,max and MA +/- % cannot be entered here. In this case, nueRp can be changed until the desired tightening torque MA,max is displayed in the background.

Tip: Save settings in cfg file

Settings are saved in a cfg file (e.g. fed1.cfg). A cfg file is created when you click "Save" button under "File\Settings". For network versions, the network drives are configured under "File\Settings\Directories". The temporary drive should be local, e.g. "c:\temp". It is advisable to create a sample cfg file, which each user then copies to their local hard drive. Best in "c:\hexagon".

HEXAGON PRICE LIST 2022-11-01

Base price for single licences (perpetual)	EUR
DI1 Version 2.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.5 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V22.1 Helical Extension Springs incl. Spring database, animation, relaxation,	675
FED3+ V21.6 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 8.0 Disk Springs	430
FED5 Version 17.1 Conical Compression Springs	741
FED6 Version 18.1 Nonlinear Cylindrical Compression Springs	634
FED7 Version 15.1 Nonlinear Compression Springs	660
FED8 Version 7.4 Torsion Bar	317
FED9+ Version 7.0 Spiral Spring incl. production drawing, animation, Quick input	490
FED10 Version 4.5 Leaf Spring	500
FED11 Version 3.6 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	220
FED13 Version 4.3 Wave Spring Washers	228
FED14 Version 2.7 Helical Wave Spring	395
FED15 Version 1.7 Leaf Spring (simple)	180
FED16 Version 1.4 Constant Force Spring	225
FED17 Version 2.2 Magazine Spring	725
FED19 Version 1.0 Buffer Spring	620
GEO1+ V7.5 Cross Section Calculation incl. profile database	294
GEO2 V3.3 Rotation Bodies	194
GEO3 V4.0 Hertzian Pressure	205
GEO4 V5.3 Cam Software	265
GEO5 V1.0 Geneva Drive Mechanism Software	218
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232
GEO7 V1.0 Internal Geneva Drive Mechanism Software	219
GR1 V2.2 Gear construction kit software	185
GR2 V1.2 Eccentric Gear software	550,-
HPGL Manager Version 9.1	383
LG1 V7.0 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V24.6 Bolted Joint Design	640
SR1+ V24.6 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.4 Girder Calculation	757
WL1+ V21.8 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.4 Cylindrical and Conical Press Fits	485
WN2 V11.3 Involute Splines to DIN 5480	250
WN2+ V11.3 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 6.1 Involute Splines to ANSI B 92.1	276
WN5 V 6.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.6 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.4 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.3 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.2 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.7 Spur and Helical Gears	1115

ZAR2 V8.2 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V10.5 Cylindrical Worm Gears	620
ZAR4 V6.3 Non-circular Spur Gears	1610
ZAR5 V12.4 Planetary Gears	1355
ZAR6 V4.3 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.3 Plus Planetary Gears	1380
ZAR8 V1.9 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.6 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V3.0 Chain Gear Design	326
ZM2.V1.0 Pin Rack Drive Design	320
ZM3.V1.0 Synchronous Belt Drive Design	224

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, ZM3, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,	4,900
SR1+, FED1,+, FED2+, FED3+)	4,900
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	-1200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8,	4,985
FED9+, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17, FED19)	
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

quality 210		ainaaa							
Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Discount/Add.cost -50% -20% 0% 10% 15% 20% 25% 30% 35%	Licenses	1	2	3	4	5	6	78	911	>11
	Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9+, FED13, FED14, FED17.

- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.

- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Software Update (software Win32/64 + pdf manual) 40 EUR

Software Update (software 64-bit Win + pdf manual) 50 EUR

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment. Fee for additional key codes: 40 EUR