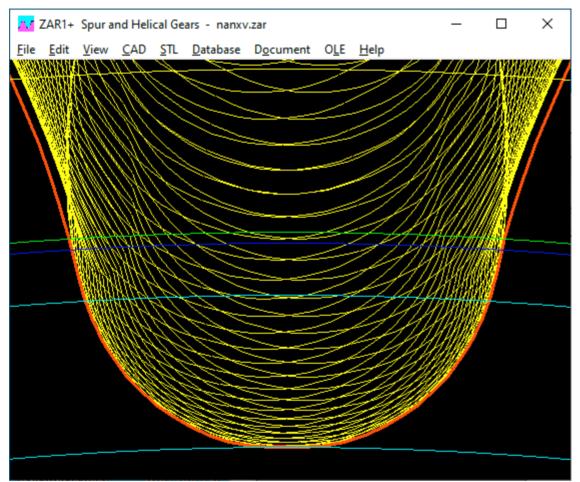

HEXAGON Newsletter 183

by Fritz Ruoss

ZAR1+, ZAR5, ZAR7, ZAR8, ZAR1W: Grinding notch by machining allowance


Once again a customer sent a tooth profile picture with an edge from the transition from the involute to the tooth root fillet with the question of whether this was a bug in the software. A check of his calculation file showed that a machining allowance q was entered, but a normal reference profile (no protuberance profile) was used. Then there are grinding notches, and these can also be seen in the tooth profile picture.

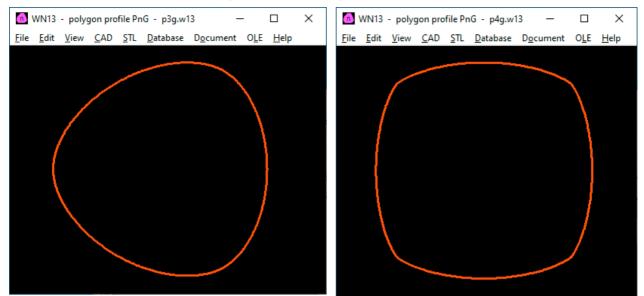
Machining allowance q 0,10 + 0,0	26 mm <	Machining allowance g 0	+	0	mm	<
		inderning allowance q o		1 ×		

Inexperienced users may not understand what "machining allowance q" means and they simply click on the default button "<". Therefore there is now a change in the program: a proposal for the machining allowance is only made if a protuberance profile has been defined beforehand, otherwise q = 0 is set. The proposal for the machining allowance has also been adjusted: 80% machining allowance plus 20% tolerance, instead of 50% + 50% as before.

ZAR1+, ZAR5, ZAR7, ZAR8, ZAR1W: Root form diameter dFf if protuberance

Under "CAD \ Settings" you can now tick "xev", then the root form circle diameter in the case of a protuberance profile is calculated at the point where the ground involute merges into the milled involute. If the protuberance has only been partially ground away, this root form circle diameter can only be determined graphically by exporting to CAD and measuring. Otherwise ("xev" not checked) the root shape diameter is calculated as before at the point where the involute merges into the tooth root fillet.

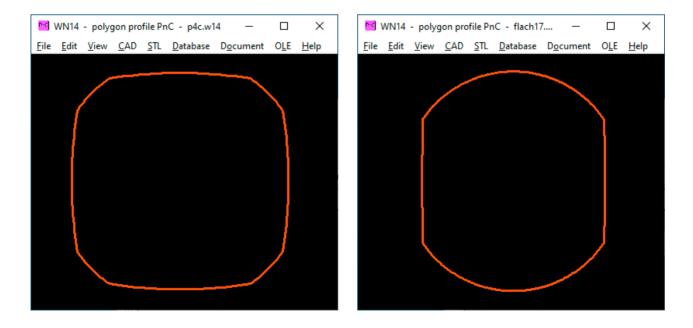
Dark blue: tooth root form diameter dFf Green: usable base circle diameter dNf (through counter gear) Light blue: base circle diameter db and tooth root diameter df


<u>File Edit View (</u>	<u>C</u> AD <u>S</u> TL	<u>D</u> atabase	D <u>o</u> cument
<u>N</u> ew			Ctrl+N
<u>O</u> pen			Ctrl+O
Open (<u>T</u> able)			
<u>S</u> ave			Ctrl+S
Save <u>A</u> s			
Export ZAR1			
<u>P</u> rint			Ctrl+P
Settings			
1 C:\VOL3\APP	S\TP\TRAIN	l∖0.zr7	Shift+F1
E <u>x</u> it			

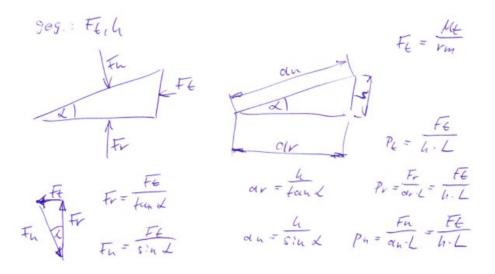
ZAR7, ZAR8: Export ZAR1

In ZAR7 and ZAR8 you can now select one gear pair (sun-planet, planet-planet, planet-ring gear) and export it to ZAR1 +.

WN13: Software for polygon profiles PnG


With WN13 you can calculate P3G profiles according to DIN 32711, but also with other numbers

of teeth (P2G, P4G, P5G, P6G). WN13 thus replaces WN6, the calculation of dimensions and profile curve are identical. Surface pressure and minimum wall thickness are not calculated in accordance with DIN 32711, but in accordance with DIN 6892 (surface pressure parallel key connection) and DIN 7190 (minimum wall thickness of interference fit). Files from WN6 can be imported.


WN14: Software for polygon profiles PnCl

With WN14 you can calculate P4C profiles according to DIN 32712, but also with other numbers of teeth (P2C, P3C, P5C, P6C). WN14 thus replaces WN7, calculation of dimensions and profile curve are identical. Surface pressure and minimum wall thickness are not calculated in accordance with DIN 32712, but in accordance with DIN 6892 (surface pressure of parallel key connection) and DIN 7190 (minimum wall thickness of interference fit). Files from WN7 can be imported. You can also calculate a flattened shaft: enter the outside diameter, inside diameter = width across flats, eccentricity is theoretically infinite, but e = 1000mm is also sufficient.

WN13, WN14: Flank pressure in PnG and PnC profiles

How is the surface pressure distributed over a PnG profile? At the largest and smallest diameter, the surface pressure due to radial force should be highest and due to tangential force lowest, in the middle there is surface pressure due to tangential force and radial force.

Let us consider the surface pressure on a wedge. One might expect the surface pressure to be highest where the force is greatest. In fact, the force and contact area are proportional, which is why the surface pressure on the wedge is the same everywhere: p = Ft / (h * L)

With this knowledge, the surface pressure for PnG and PnC profiles can be calculated in the same way as for other multi-tooth profiles from torque, mean diameter, length, tooth height and number of teeth:

P = F / A = T / (rm * L * h * n)

If you use the diameter designations from DIN 32711 and 327122, the mean radius rm for PnG: rm = d1 / 2 and for PnC: rm = (d1 + d2) / 4.

In the case of a press fit, the surface pressure increases by

p = Pu - f * (Rz1 + Rz2) * modulus of elasticity / (dm * Qk)

This is not taken into account in WN6, WN7, WN13 and WN14 for the time being, nor in DIN 32711 and 32712.

💌 WN13 - polygon profile PnG -	32711e.v	v13			_			×
<u>File Edit View CAD STL Dat</u>	abase	D <u>o</u> cur			elp			
			1,00	1,00	outer circle diameter	d5	mm	26,6
pzul = Re*fS*fH	padm	MPa	270	270	inner circle diameter eccentricity	d6 e2	mm mm	23,4
Sigma zul = Re * fW	Sig.zul	MPa	300	300	length	L2	mm	20
pa zul = pzul * fW * fapp	pa zul	MPa	270	270	in a second s			120
p max = T / (rm * h * L * n)	p max	MPa	126	126				
h = d2min - d8max	h	mm	1,59	1,59		\sim		
dm = d1, rm = dm / 2	dm	mm	25,0	25,0		<u> </u>		
DAa = dB2	DAa	mm		42,0		1	۱	11
QA = dm / DAa	QA			0,595		N.	٦.	
sigmatAi = pmax * (1+QA²) / (1-QA²)	Sig.tAi	MPa		264		J.	1	a 3
sigmarAi = -pmax	Sig.rAi	MPa		-126		1	1	
sigmavAi = SQRT(sig.t² + sig.r² - sig.t*sig.r)	Sig.vAi	MPa		344	1 N 🛰	4		
QA max = SQRT((Re2-pmax) / (Re2+pmax))	QA max			0,640		\checkmark		
dAa min = dm / QAmax	dAamin	mm		39,1		-		
s min = (dAa min - dmax) / 2	s min	mm		7,04	2547	_		
s = (dB2 - d5) / 2	s	mm		7,70	1			
Wt > pi/16 * dmin^3	Wp	mm ³	2992		1			
Wb > pi/32 * dmin * 3	WX	mm ²	1496		1			
tau max = T / Wt	tau max	MPa	50		1			
sigma z max = sigma tAi	sig.z	MPa	-126	264	1			
sigma b max = Mb / Wb	sig.bmax	MPa	0	0	1			
sigma v = sigma z max + sigma b max	sig.vmax	MPa	87	264]			
S = pazul / pmax	Sp		2,15	2,15]			
S = Sig.zul / Sig.vmax	Se		3,45	1,14	1			

WN13, WN14: Calculate minimum wall thickness of the hub

In DIN 32711 and 32712 there is a simple approximation formula for estimating the required hub wall thickness:

s = f * SQRT (Mt / (Sigma z, perm * L))With Sigma z, perm = Re L = hub length Mt = torque f = application factor: f = 1.44 for P3G with d4 <= 35mm f = 1.2 for P3G with d4> 35mm f = 0.7 for P4C

Strangely enough, in this formula the minimum wall thickness only depends on the hub length, the diameter is not taken into account.

In WN13 and WN14, however, the minimum wall thickness is derived from the formulas for stresses in the interference fit. The greatest tangential stress occurs on the inside of the hub:

Sigma $tAi = p * (1 + QA^2 / (1 - QA^2))$

With QA = outer diameter of hub (dAa) / mean inner diameter of hub (dm). Limiting the maximum tangential stress to the yield point (Sigma tAi = Re) and changing the formula to QA results in: QA = SQRT ((Re + p) / (Re-p))With QA = dm / DaA and wall thickness "s = (DaA - dm) / 2" the minimum wall thickness becomes

smin = dm / 2 * (SQRT ((Re + p) / (Re-p)) - 1)

With this formula, the surface pressure pmax must be smaller than the yield point Re, otherwise the wall thickness will be infinitely large. In the case of the interference fit (calculation with WN1), the yield point may by all means be exceeded; one then speaks of the elastic-plastic state of stress with partially plastic deformation. Since PnG and PnC connections are used more than detachable connections, it makes sense to limit the surface pressure to the yield point Re.

It is true that the permissible surface pressure according to DIN 6892 is higher than the yield point (pzul = Re * fS * fH) because compressive stress may be higher than tensile stress. But because the surface pressure on the hub generates at least the same tensile stress, the surface pressure at least on the hub must be less than the yield point of the material.

When comparing the calculated minimum wall thickness with DIN 32711 and DIN 32712 using the calculation examples in Appendix A (P3G and P4C with nominal dimension 25mm and torque 150 Nm), the results are surprisingly almost identical: s = 7.0mm (7.2 according to DIN) for P3G and 3.8mm with P4C (3.5mm according to DIN). But this is also due to the fact that in WN13 with pmax = 126 instead of 96 MPa and in WN14 with pmax = 84 instead of 51 MPa. Or it is a coincidence because the DIN approximation formula does not even take into account a diameter (lever arm) and thus tangential force and surface pressure.

WN13, WN14: Extension of hub outer diameter by pmax

With the formulas from the calculation of interference fits in WN13 and WN14, the expansion of the hub at the outer diameter is calculated. This is important if the hub e.g. is a gear.

All Programs: Decimalpoint setting

At File\Settings, text for decimal point was changed: instead of 2,3,4,5 it now reads -1.0, +1, +2. The default setting is 0. With "-1" numbers with 1 decimal place less are displayed, with "+1" with one decimal place more. With the old representation, users complained that numbers were not displayed with the selected number decimal places. But it doesn't make sense to output large numbers with 2 to 5 decimal places (F = 9567.567 N).

WN13 Configuration		-		×
Directories Graphics CAD Colour Printer	Printout Settings external Drawing			
Special characters © 2 µ * O 2 u deg Decimal sign CAD->IXT © x.xx O x,xx	Result Screen @ default Quick 1 Quick 3 Production drawing Diagram Drawing Quick 4			
0 v +/-digits for floating point numbers 1 0 +1 metric (mm, N, MPa, Nmm, *C) v +3	 Enter user at start of program Show licence window at start ✓ Init Float ? △ Archive Idg ? 	of program		
Help level 0 : No info window 1 : default help level 2 : extended help, single input	actual.w13 ? Save Menu Language ? Suppress hints and warnings			
OK	Cancel Save E	xport	Impor	t

Software maintenance invoices with 19% Mwst.

Strangely enough, software maintenance bills incur 19% VAT. because the "end of the performance period" is 2021. We were made aware of this by customers and the invoices had to be changed.

Corona test instead of "Volksfest": "Wasenhelfer" wanted - found

Can previously healthy people become infected with the virus during the corona test? Very likely if you see how the helpers hold people in the face with their rubber gloves. The city of Stuttgart needs new helpers for the new corona test center on the Cannstatter Wasen and is calling on students in particular to apply. Minimum requirements: none. It would make more sense to program robots for corona tests. Then every move is perfect, and the robot colleague could reliably disinfect itself after every smear.

Right to Homeschooling in corona times

As expected, travelers have brought the coronavirus back from risk countries. Then it was widely distributed through schools, kindergartens, workplaces and private parties. Pupils cannot protect themselves against infection, they are forced to attend classroom lessons. The minimum distance cannot be kept because the classrooms are too small. Masks do not protect if you sit together for hours. Therefore, the responsible politicians should better demand a right to work from home for students rather than workers. Those who want face-to-face lessons go to school. And those who want to stay at home have to do homeschooling. The effort would be manageable: put assignments and worksheets on the internet and the teacher gets a microphone and a camera. For companies, on the other hand, an official right for employees to work from home makes no sense. An entrepreneur hates nothing more than superfluous regulations by incompetent officials and politicians.

Toll dodger

What kind of type the German transport minister is, you can see from the justification and the time of his terminated toll contracts: Justification: Quality defects on the part of the suppliers. Time: immediately after the courts rejected his toll plans. Quality defects in products that have not yet been delivered and are no longer needed. The complete opposite of a "respectable businessman". I wouldn't sell him any software.

HEXAGON PRICE LIST 2020-11-01

Base price for single licences (perpetual)	EUR
DI1 Version 1.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V31.0 Helical Compression Springs incl. spring database, animation, relax., 3D,	695
FED2+ V21.7 Helical Extension Springs incl. Spring database, animation, relax, 5D,	675
FED3+ V21.2 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 7.8 Disk Springs	430
FED5 Version 16.5 Conical Compression Springs	741
FED6 Version 17.0 Nonlinear Cylindrical Compression Springs	634
FED7 Version 14.1 Nonlinear Compression Springs	660
FED8 Version 7.2 Torsion Bar	317
FED9 Version 6.3 Spiral Spring	394
FED10 Version 4.3 Leaf Spring	500
FED11 Version 3.5 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	210
FED13 Version 4.2 Wave Spring Washers	220
FED14 Version 2.5 Helical Wave Spring	395
FED15 Version 1.6 Leaf Spring (simple)	180
FED16 Version 1.3 Constant Force Spring	225
FED17 Version 1.9 Magazine Spring	725
GEO1+ V7.4 Cross Section Calculation incl. profile database	294
GEO2 V3.2 Rotation Bodies	
GEO2 V3.2 Rotation Bodies GEO3 V3.3 Hertzian Pressure	205
GEO4 V5.2 Cam Software	205
GEO5 V1.0 Geneva Drive Mechanism Software	203
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	218
GEO7 V1.0 Internal Geneva Drive Mechanism Software	232
GR1 V2.2 Gear construction kit software	185
GR2 V1.1 Eccentric Gear software	550,-
HPGL-Manager Version 9.1	383
LG1 V6.6 Roll-Contact Bearings	296
LG2 V3.1 Hydrodynamic Plain Journal Bearings	460
SR1 V23.6 Bolted Joint Design	640
SR1+ V23.6 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.2 Girder Calculation	757
WL1+ V21.6 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.3 Cylindrical and Conical Press Fits	485
WN2 V10.3 Involute Splines to DIN 5480	250
WN2+ V10.3 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 6.0 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 5.1 Involute Splines to ANSI B 92.1	276
WN5 V 5.1 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 4.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 4.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.5 Serration to DIN 5481	195
WN9 V 2.4 Spline Shafts to DIN ISO 14	170
WN10 V 4.3 Involute Splines to DIN 5482	260
WN11 V 2.0 Woodruff Key Joints	240
WN12 V 1.2 Face Splines	256
WN13 V 1.0 Polygon Profiles PnG	238
WN14 V 1.0 Polygon Profiles PnC	236
WNXE V 2.2 Involute Splines – dimensions, graphic, measure	375
WNXK V 2.1 Serration Splines – dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.7 Spur and Helical Gears	1115
ZAR2 V8.1 Spiral Bevel Gears to Klingelnberg	792

ZAR3+ V10.4 Cylindrical Worm Gears	620
ZAR4 V6.0 Non-circular Spur Gears	1610
ZAR5 V12.3 Planetary Gears	1355
ZAR6 V4.2 Straight/Helical/Spiral Bevel Gears	585
ZAR7 V2.2 Plus Planetary Gears	1380
ZAR8 V1.8 Ravigneaux Planetary Gears	1950
ZAR9 V1.0 Cross-Helical Screw Gears	650
ZARXP V2.6 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.5 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V2.5 Chain Gear Design	326

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1,	
WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+,	8,500
TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,	4,900
SR1+, FED1,+, FED2+, FED3+)	4,300
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9,	4,985
FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	14,950

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
			~						

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs

- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.

- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.

- Portugues: FED1+, FED17

- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software Win32/64 + pdf manual)	40
Software Update (software 64-bit Win + pdf manual)	50

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0.

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or PayPal (paypal.me/hexagoninfo) net. After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

 Stiegelstrasse 8
 D-73230 Kirchheim
 Tel. +49 7021 59578,
 Fax +49 7021 59986

 Mobile: +49 163 7342509
 E-Mail: info@hexagon.de
 Web: www.hexagon.de