HEXAGON Newsletter 175

by Fritz Ruoss

ZAR9 – Software for Screw Gears or Crossed Helical Gears

The gear wheels of screw gears or crossed helical gears are actually normal helical gear wheels, as calculated with ZAR1 +. But the axes are not parallel, but crossed. In the normal helical gear, the sum of the helix angles is 0 (beta right-toothed - beta left-toothed), in the helical gear with crossed axes, it can be 1 $^{\circ}$ to 90 $^{\circ}$. Helical gear can be used for crossed and skewed axes. For example, with gear ratio 1 used for change of direction, and with a gear ratio 50 at pinion teeth number 1 as a replacement for worm gear, when the demands on load and service life are low. The strength is calculated according to Niemann.

ZAR9 is available now for the price of 650 Euro (single license).

SR1 / SR1+: Create bolt, nut and clamping parts with 3D Printer

Clamp parts could already be generated and printed as STL files. Now this is also possible for bolt and nut. So you can create a model of the bolted joint with 3D printer. This is especially interesting if self-designed bolts are used.

For better traceability of the fatigue strength diagrams, the intersection of the vertical working line tauk1-tauk2 with the fatigue strength curve (10 million cycles) is now listed as tauoz' as a numerical value. This is the permissible upper shear stress for fatigue strength for the given application. The lower shear stress is then tauu = tauk1, the permissible stress variation is taukh = tauoz '- tauu. The same with bending stress in FED3,4,9,10,13,14,15,16. Here, the intersection sigmao' in the Goodman diagram is displayed.

FED4, FED5, FED6, FED7, FED12: Characteristic line of spring in Excel

The load-extension curve can be exported as a table in Excel under "OLE \ Chart F-s".

FED5: 3D Centerline as STP file

The center line of a conical spring can be output for any clamping length as a step file.

FED14

Spring drawing: spring length in inches, if set to imperial units. Operating temperature saved.

A model of shaft and hub can now be produced on the 3D printer. Only as an illustrative object, the press fit can of course not be produced in the required accuracy and surface quality with the 3D printer.

WN2,4,5,10,WNXE: Warning cffmin < 0

Warning cffmin < 0, if distance between form diameter tooth root to tooth tip diameter of counter wheel too small.

ZAR3 +: Worm gear housing for 3D printing

ZAR3 + generates an STL file for a gearbox housing consisting of 2 halves. You can print with the 3D printer 2 times and assemble a worm gear model.

ZAR3+: Diagram a=f(gamma_m): Worm and Worm Wheel dimensions

In the diagram with the center distance as function of the helix angle, pitch diameter, tip diameter and root diameter of worm and worm wheel are drawn. An additional curve is drawn for the root diameter of the worm. Thus, you can estimate which helix angle is feasible for a high efficiency and a specific center distance, without the core diameter of the screw becomes too thin.

ZAR3+: Calculate thread dimensions of a screw as worm dimensions

A thread of a screw has the same shape as the single-flight worm of a cylindrical worm gear. The shape of the cylindrical worm is again the same as a helical spur gear with a number of teeth 1 and large helix angle. The dimensions of a trapezoidal thread spindle can be calculated as a worm in ZAR3 +. The wedge angle of a trapezoidal thread is 30 °, then the pressure angle of the worm 15 °. The module of the worm is P / pi, the pitch circle diameter of the worm is the pitch diameter of the thread. However, unlike gears, the head and root diameters of the thread are arbitrarily set or rounded, so you have to extra calculate tooth head height and root height factor for each thread size: hf / mn = (d2-d3) / (2 * m), ha / mn = (d-d2) / (2 * m), axial modulus mx = P / pi, tan gamma_m = z * mx / d2

Number of threads of the screw z is the number of starts of the worm, normal 1.

Also normal ISO threads can be calculated as a screw. With pressure angle 30 °, calculate head and foot height factors also from outside diameter and core diameter.

🙀 ZAR3+ Configuration	1	– 🗆 X
Directories Graphics	CAD Colour Printer Printout Settings external	Drawing
Color graphics	3840 x 2160	dialog window size
monochrom	background colour	
Window Size x 560	Zoom zoom increment 1,02 Zoom Mouse Wheel ?	Input ~
y 420	pan faktor 0,02	x y z z -15 90 210 ✓ 3D Edit x,y,z

All programs: Switch on/off zooming with mouse wheel

With the mouse wheel you can enlarge and reduce size of drawings and graphics. Unfortunately, Windows 10 does not always work as it should, sometimes the background image is brought to the foreground and zoomed in when you just type in and unintentionally touch the mouse wheel. Therefore you can now turn off zooming with the mouse wheel ("Zoom Mouse Wheel?").

New price for Complete package

When releasing new programs had been neglected to adjust the price for the complete package. From 1.7.2019 the price for a complete HEXAGON package of 63 modules is 14950 EUR (previously 12900). Update price for a complete package is now 1200 Euros (previously 1000).

HEXAGON PRICE LIST 2019-07-01

Base price for single licences (perpetual)	EUR
DI1 Version 1.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V30.9 Helical Compression Springs incl. spring database, animation, relax., 3D	695
FED2+ V21.3 Helical Extension Springs incl. Spring database animation relaxation	675 -
FED3+ V21.1 Helical Torsion Springs incl. prod drawing animation 3D rectand wire	600 -
FED4 Version 7.8 Disk Springs	430 -
EED5 Version 16.4 Conical Compression Springs	7/1
FEDS Version 16.4 Conical Compression Springs	624
FED6 Version 10.9 Nonlinear Cylindical Compression Springs	034
FED7 Version 13.9 Nonlinear Compression Springs	660
FED8 Version 7.2 Torsion Bar	317
FED9 Version 6.3 Spiral Spring	394
FED10 Version 4.3 Leaf Spring	500
FED11 Version 3.5 Spring Lock and Bushing	210
FED12 Version 2.7 Elastomer Compression Spring	220
FED13 Version 4.2 Wave Spring Washers	228
FED14 Version 2.4 Helical Wave Spring	395
FED15 Version 1.6 Leaf Spring (simple)	180
FED16 Version 1.3 Constant Force Spring	225
FED17 Version 1.9 Magazine Spring	725
GEO1+ V7.3 Cross Section Calculation incl. profile database	294
GEO2 V3.2 Rotation Bodies	194
GEO3 V3 3 Hertzian Pressure	205 -
GEO4 V5.2 Cam Software	265 -
GEO5 V1.0 Geneva Drive Mechanism Software	200.
GEO6 V1.0 Binch Boll Overrupping Clutch Software	210.
GEO7 V1.0 Internal Conova Drive Mechanism Software	232
CP1 V2.2 Coor construction kit opftware	219
UPCL Managar Varian 0.1	100
HPGL-Manager Version 9.1	383
LG1 V6.6 Roll-Contact Bearings	296
LG2 V3.0 Hydrodynamic Plain Journal Bearings	460
SR1 V23.5 Bolted Joint Design	640
SR1+ V23.5 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.0 Girder Calculation	757
WL1+ V21.3 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.2 Cylindrical and Conical Press Fits	485
WN2 V10.1 Involute Splines to DIN 5480	250
WN2+ V10.1 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 5.5 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 4.8 Involute Splines to ANSI B 92.1	276
WN5 V 4.8 Involute Splines to ISO 4156 and ANSI B 92.2 M	255 -
WN6 V 3 1 Polygon Profiles P3G to DIN 32711	180 -
WN7 V 3.1 Polygon Profiles P4C to DIN 32712	175 -
WN8 V 2 3 Serration to DIN 5481	105
WNO V 2.3 Selfation to DIN 5401	135
White V 2.5 Splittle Stidits to Din 150 14	170
WNTU V 4.2 Involute Splines to DIN 5482	260
VVN11 V 1.4 WOOdruff Key Joints	240
	256
WNXE V 2.2 Involute Splines - dimensions, graphic, measure	375
WNXK V 2.1 Serration Splines - dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.3 Spur and Helical Gears	1115
ZAR2 V8.0 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V10.3 Cylindrical Worm Gears	620
ZAR4 V6.0 Non-circular Spur Gears	1610
ZAR5 V11.8 Planetary Gears	1355

585
1380
1950
650
275
450
326

PACKAGES	EUR				
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	8,500				
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1,					
SR1+, FED1,+, FED2+, FED3+)	4.000,				
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)					
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600				
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)					
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741				
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550				
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9					
FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	-				
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)					
HEXAGON Complete Package (All Programs)	14,950				

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
(Negetive Discovery means additional cost)									

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software Win32/64 + pdf manual)	40.
Software Update (software 64-bit Win + pdf manual)	50 -

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1200 EUR **Maintenance contract** for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager.

Conditions for delivery and payment

Delivery by Email or download (zip file, manual as pdf files): EUR 0. General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

Stiegelstrasse 8D-73230 KirchheimTel. +49 7021 59578,Fax +49 7021 59986Kieler Strasse 1AD-10115 BerlinMühlstr. 13D-73272 NeidlingenMobile: +49 163 7342509E-Mail: info@hexagon.deWeb: www.hexagon.de