HEXAGON Newsletter 171

by Fritz Ruoss

6. FED3+ installation space			_		×
lift ang	gle alpha h	45	٠		
Len	gth Lkmax	30	mm	<	
Ler	ngth Lkmin	0	mm	<	
outside diameter (bor	e) De max	50	mm	<	
inside diameter (mand	rel) Dimin	15	mm	<	
spring lo	ad M1 min	490,5	Nmm	<	
spring loa	ad M1 max	500	Nmm	<	
spring lo	ad M2 min	600	Nmm	<	
spring loa	ad M2 max	900	Nmm	<	
				mm <>	inch
OK Cancel	Aux. <u>I</u> maj	ge <u>H</u> e	lp Text		Calc

FED3+: Installation Space

Similar to FED1+, you can now also enter an installation space in FED3+ and calculate thousands of springs with different wire diameters, coil diameters and coil numbers. From the calculated variants, you can then choose the optimum torsion spring for the respective application (maximum safety, lowest weight, smallest length, maximum resonance frequency, smallest tolerance of torque according to DIN 2194).

FED3+: Torsion Spring Drawing with Dimensions

In Quick3, Quick4 and production drawing Quick3, the legs are drawn with dimensions now.

FED3+: Quick4 and Quick3 Production Drawing with 3D torsion spring

In Quick views, the number of coils or spring length is not visible in the spring drawing on first glance. Therefore, in the Quick4 view and in the "Production drawing Quick3" a 3D view of the torsion spring (center line) will be drawn now.

FED3+: New Price 600 EUR

From now on, new price of FED3+ is 600 euro. For existing customers with FED3+ licenses nothing changes, you can update the latest version as usual at the update price of 40 euro. There is also no change in the price of packages containing FED3+ (Spring package, Mechanical Engineering package, complete package).

FED1+ Assembly Space: "Init" row added with initial spring data

FED1+ Optimize															_		×
<u>File Edit H</u> elp																	
Optimize .	Fl	F2	De	d	R	LO	Ll	L2	Ln	Le	n	tauz/k2	tauhz/l	m[g]	Dm/d	freq0	L0/Dm
Init	113	226,1	36	4	9,421	120	108	96	48,98	42,31	8,5	337,4	168,7	97,42	8	167,2	3,75
S2 max (tauz/tau)	113	199,0	37,6	4,25	7,165	123,8	108	96	72,77	62,49	12,58	258,8	111,8	162,0	7,847	110,5	3,711
Sh max (tauhz/tau	113,1	180,9	41,5	4,25	5,65	128	108	96	68,11	57,64	11,45	258,3	96,8	166,1	8,765	97,29	3,437
m min [g]	113	180,9	43,45	3	5,658	128,0	108	96	15,26	12,78	2,217	757,7	284,4	25,85	13,48	300,8	3,164
Sa max (Lc min)	113	180,9	53,2	3,2	5,658	128,0	108	96	13,64	11,37	1,520	761,8	286,0	29,3	15,62	306,4	2,559
freq0 max	113	280,3	49,3	4	13,95	116,1	108	96	18,58	16,22	2,024	564,9	337,2	47,9	11,33	350,3	2,563
average S2, Sa	113	189,9	45,4	3,8	6,412	125,6	108	96	30,32	25,39	4,63	411,5	166,7	69,44	10,95	172,5	3,020
tol F min	113,1	180,9	39,55	3	5,65	128	108	96	18,09	15,18	3,010	691,6	259,2	28,3	12,18	271,4	3,503
<																	>

Spring data of the original compression spring have been added at the first row of the table with optimized springs. This simplifies the comparison of the optimized springs with the initial spring.

FED1+: Expert Mode: Menu simplified for Beginners

In FED1+, almost all input data was integrated in the Quick Input. Nevertheless, the individual entries still exist in the menu because of the preference of many users. In order to make the menu easier for beginners, you can now switch off the expert mode under "Help -> Expert Mode", then in "Edit" there are only 5 menu items left (instead of 18). Also, Database, OLE, and some positions in the File menu are no longer displayed.

This makes it easier for new users and occasional users to use the program.

GEO2 - Input diameter d or coordinate y

When entering rotation body, you can now input the diameter d instead of the y coordinate.

📩 coordinates 4	_		×
mm <> inch			
×	4 -2,92	mm	<
Y <> d d	4 15,62	mm	<
arc angle 4-	5 0	*	<
OK Cancel <u>H</u> elp	Text	Aux. <u>I</u> m	nage

ZAR5 – Effective Face width

ZAR5 beff.			_		×
	S	Р	н		
Facewidth	ь 35	40	44	mm	<
chamfers at end of face width (chamfer	r) 1	1	1	mm	<
face width center	roffset 0	2	mm		<
b	SPeff (Z) = 33	mm b	PHeff (Z) = 3	8 mm	
bSeff	(Y) = 35 mm	bPSeff (Y	′) = 38 mm		
		bPHeff ()	r′) = 40 mm −l	bHeff ('r	′) = 41,5 mm
OK	Cancel	<u>H</u> elp	Aux.	<u>I</u> mage	

For different face width of the gear wheels, eventually combined with chamfers and center offset, effective face width used for tooth root fracture calculation (beffY) and for flank pressure calculation (beffZ) according to ISO 6336 / DIN 3990 has to be used. The effective tooth width from the input window with different tooth widths, chamfers and center offset is now correctly taken over again in the calculation of the pairs sun-planet and planet-ring gear.

SR1: Edit -> Clamping Plates: Insert/Delete Plates with self-defined material data

Clamping plates	-		х
01: de= 99,0 di= 17,7 l= 0,35 chamfer 02: de= 99,0 di= 17,0 l= 29,65 P1 03: de= 99,0 di= 17,0 l= 30,00 P 2		<u>N</u> ew <u>M</u> odify <u>I</u> nsert <u>D</u> elete	,
OK Cancel <u>H</u> elp Aux. <u>I</u> mage _			

When inserting clamping pieces between existing clamping plates under "Edit\ Clamping Plates", the permissible pressure against creep pGKr was not taken over, as a result of which the pGKr values $\Box \Box$ in the following clamping plates were changed. But only in the case that material data was entered individually and not selected by database. The bug was corrected in version 23.0.1. The error only affected users, which

- 1. do not use the quick input but "Edit \ Clamping Plates"
- 2. do not select the material from database, but enter material data manually.
- 3. use the buttons "Insert" and "Delete" under "Edit \ Clamping Plates".
- 4. calculation "Creep" activated at "Calculation Method".

SR1+: Expert Mode

As in FED1+ you can also switch off "Expert Mode" in SR1 menu, then only the Quick Input is displayed instead of the individual entries. This is clearer and faster. But if you want to enter the material data of the clamping plates individually or even enter a spring constant for the clamping plate, you have to switch to expert mode (or remain in expert mode). The programs start with Expert Mode on.

Self-defined text in drawings: Configure Layer (or colour)

When entering additional text under "Document\Drawing Info", you can now also configure the layer. The colour is assigned to the layer under "File\Settings\Colour". If you configure colour white, the text will be displayed on the screen (if the background is black), but not printed.

					(Date)	Name				
	Created	d Бу			2018-02-14	Fritz				
	Approv	ed by		:	2018-10-15	Manuel				
	Techni	cal refe	rence	:	2018-10-15	Lukas				
				1			1			
	Respor	nsible d	ept.		R+D					
	Docum	ent typ	e .	1	drawing					
	Desure									
	Docum	ient stal	tus		eleased					
	Docum	ient stal	tus		eleased					
	Docum	ient stal	tus		eleased					
	x	ient stal	tus h	phi	eleased Text				 Layer	1
1	× 100	y 100	h 10	phi 45	eleased Text just for info	rmation			Layer 29	l
1	x 100 100	ent stal	h 10 10	phi 45 -45	eleased Text just for info Layer 17	rmation			Layer 29 17	l
1 2 3	x 100 100	y 100 130 160	h 10 10 10	phi 45 -45 10	eleased Text just for info Layer 17 Layer 22	rmation			Layer 29 17 22	
1 2 3 4	× 100 100 60	y 100 130 160 100	h 10 10 10	phi 45 -45 10 5	eleased Text just for info Layer 17 Layer 22 Layer 30	rmation			Layer 29 17 22 30	
1 2 3 4 5	x 100 100 60 60	y 100 130 160 100 130	h 10 10 10 10 10 10	phi 45 -45 10 5 20	eleased Text just for info Layer 17 Layer 22 Layer 30 Layer 31	rmation			 Layer 29 17 22 30 31	
1 2 3 4 5 6	x 100 100 60 60 60	y 100 130 160 100 130 130 160	h 10 10 10 10 10 10 10	phi 45 -45 10 5 20 30	eleased Text just for info Layer 17 Layer 22 Layer 30 Layer 31 Layer 29	rmation			Layer 29 17 22 30 31 23	
1 2 3 4 5 6 7	x 100 100 100 60 60 60	2000	h 10 10 10 10 10 10 10	phi 45 -45 10 5 20 30	eleased Text just for info Layer 17 Layer 22 Layer 30 Layer 31 Layer 29	rmation			Layer 29 17 22 30 31 25	

3D Drawing with/without coordinate system

Until now, a coordinate system has always been drawn in 3D drawings. This can now be omitted, so that the actual drawing is more visible.

Tip: Start program (FED1 + floating license) by double-clicking on the file

Question: Is there also the possibility to start the program directly from the .fed file? When I try to open a .fed file by double-clicking or "open with", it does not load the material databases as configured, as it probably does not know the correct working directory. Is there any possibility here? The same problem also affects Teamcenter, because we can not start the spring calculation directly from our folder system and need to save locally and then have to open separately via HEXAGON.

Answer: Yes, for all users of the network version you have to copy the cfg file from the start folder or working directory to "C:\HEXAGON\". Or in "C: \HEXAGON\FED1" at FED1+. In these folders, FED1+ will search the file fed1.cfg with the configuration data if it is not found in the folder containing the .fed file.

Google Translator Blossoms: "Entreprise de Ressort" is a "Frühlingsgesellschaft"

Google Übersetzer		Sofortübersetzung deaktivieren						
Englisch Deutsch Französisch Französisch - erkannt	-	Deutsch Englisch Französisch 🕶 Übersetzen						
Entreprise de ressorts	×	Frühlingsgesellschaft						
4) /	22/5000	☆ □ ● <	ø					

Apparently, Google Translator always translates in 2 steps: first everything to English, then to the target language. The French-to-English translation is still correct for "entreprise de ressort": "Spring company", the error happens in the second step English-into-German (spring = Frühling). Vice versa, if you want to translate "Federfabrik" into French, nothing happens. Only when you write with blank "Feder fabrik", the translator displays "fabrique de plumes", in English "feather factory".

HEXAGON PRICE LIST 2018-09-01

PRODUCT	EUR
DI1 Version 1.2 O-Ring Seal Software	190
DXF-Manager Version 9.1	383
DXFPLOT V 3.2	123
FED1+ V30.7 Helical Compression Springs incl. spring database, animation, relax., 3D	695
FED2+ V21.1 Helical Extension Springs incl. spring database, animation, relaxation,	675
FED3+ V21.0 Helical Torsion Springs incl. prod.drawing, animation, 3D, rectang.wire,	600
FED4 Version 7.7 Disk Springs	430
FED5 Version 16.1 Conical Compression Springs	741
FED6 Version 16.7 Nonlinear Cylindrical Compression Springs	634
FED7 Version 13.7 Nonlinear Compression Springs	660
FED8 Version 7.2 Torsion Bar	317 -
FED9 Version 6.3 Spiral Spring	394 -
FED10 Version 4.3 Leaf Spring	500 -
FED11 Version 3.5 Spring Lock and Bushing	210 -
FED12 Version 2.6 Elastomer Compression Spring	220 -
FED13 Version 4.2 Wave Spring Washers	228 -
FED14 Version 2.2. Helical Wave Spring	395 -
FED15 Version 1.6 Leaf Spring (simple)	180 -
FED16 Version 1.3 Constant Force Spring	225 -
FED17 Version 1.7 Magazine Spring	725 -
GEO1+ V7 3 Cross Section Calculation incl. profile database	294 -
GEO2 V3 2 Rotation Bodies	194 -
GEO2 V3.2 Notation Bodies	205 -
GEO4 V5.1 Cam Software	205.
GEO5 V1.0 Geneva Drive Mechanism Software	200.
GEO6 V1.0 Pinch Roll Overrunning Clutch Software	232 -
GR1 V2 1 Gear construction kit software	185 -
HPGL-Manager Version 9.1	383 -
I G1 V6 6 Roll-Contact Bearings	296 -
I G2 V3 0 Hydrodynamic Plain Journal Bearings	460 -
SR1 V23 1 Bolted Joint Design	640 -
SR1+ V23.1 Bolted Joint Design incl. Flange calculation	750
TOL1 V12.0 Tolerance Analysis	506
TOL2 Version 4.1 Tolerance Analysis	495
TOLPASS V4.1 Library for ISO tolerances	107
TR1 V6.0 Girder Calculation	757
WL1+ V21.2 Shaft Calculation incl. Roll-contact Bearings	945
WN1 V12.0 Cylindrical and Conical Press Fits	485
WN2 V10.1 Involute Splines to DIN 5480	250
WN2+ V10.1 Involute Splines to DIN 5480 and non-standard involute splines	380
WN3 V 5.4 Parallel Key Joints to DIN 6885, ANSI B17.1, DIN 6892	245
WN4 V 4.8 Involute Splines to ANSI B 92.1	276
WN5 V 4.8 Involute Splines to ISO 4156 and ANSI B 92.2 M	255
WN6 V 3.1 Polygon Profiles P3G to DIN 32711	180
WN7 V 3.1 Polygon Profiles P4C to DIN 32712	175
WN8 V 2.3 Serration to DIN 5481	195
WN9 V 2.3 Spline Shafts to DIN ISO 14	170
WN10 V 4.2 Involute Splines to DIN 5482	260
WN11 V 1.3 Woodruff Key Joints	240
WN12 V 1.1 Face Splines	256
WNXE V 2.2 Involute Splines - dimensions, graphic, measure	375
WNXK V 2.1 Serration Splines - dimensions, graphic, measure	230
WST1 V 10.2 Material Database	235
ZAR1+ V 26.3 Spur and Helical Gears	1115
ZAR2 V8.0 Spiral Bevel Gears to Klingelnberg	792
ZAR3+ V9.1 Cylindrical Worm Gears	620
ZAR4 V6.0 Non-circular Spur Gears	1610
ZAR5 V11.7 Planetary Gears	1355
ZAR6 V4.0 Straight/Helical/Spiral Bevel Gears	585

ZAR7 V1.5 Plus Planetary Gears	1380
ZAR8 V1.4 Ravigneaux Planetary Gears	1950
ZARXP V2.4 Involute Profiles - dimensions, graphic, measure	275
ZAR1W V2.1 Gear Wheel Dimensions, tolerances, measure	450
ZM1.V2.5 Chain Gear Design	326

PACKAGES	EUR
HEXAGON Mechanical Engineering Package (TOL1, ZAR1+, ZAR2, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WN2+, WN3, WST1, SR1+, FED1+, FED2+, FED3+, FED4, ZARXP, TOLPASS, LG1, DXFPLOT, GEO1+, TOL2, GEO2, GEO3, ZM1, WN6, WN7, LG2, FED12, FED13, WN8, WN9, WN11, DI1, FED15, WNXE, GR1)	8,500
HEXAGON Mechanical Engineering Base Package (ZAR1+, ZAR3+, ZAR5, ZAR6, WL1+, WN1, WST1, SR1+, FED1,+, FED2+, FED3+)	4.900,-
HEXAGON Spur Gear Package (ZAR1+ and ZAR5)	1,585
HEXAGON Planetary Gear Package (ZAR1+, ZAR5, ZAR7, ZAR8, GR1)	3,600
HEXAGON Involute Spline Package (WN2+, WN4, WN5, WN10, WNXE)	1,200
HEXAGON Graphic Package (DXF-Manager, HPGL-Manager, DXFPLOT)	741
HEXAGON Helical Spring Package (FED1+, FED2+, FED3+, FED5, FED6, FED7)	2,550
HEXAGON Complete Spring Package (FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED8, FED9, FED10, FED11, FED12, FED13, FED14,, FED15, FED16, FED17)	4,985
HEXAGON Tolerance Package (TOL1, TOL1CON, TOL2, TOLPASS)	945
HEXAGON Complete Package (All Programs)	12,900

Quantity Discount for Individual Licenses

Licenses	2	3	4	5	6	7	8	9	>9	
Discount %	25%	27.5%	30%	32.5%	35%	37.5%	40%	42.5%	45%	

Network Floating License

Licenses	1	2	3	4	5	6	78	911	>11
Discount/Add.cost	-50%	-20%	0%	10%	15%	20%	25%	30%	35%
(Negative Discount m	oono oddi	tional	+)						

(Negative Discount means additional cost)

Language Version:

- German and English : all Programs
- French: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED10, FED13, FED14, FED15, TOL1, TOL2.
- Italiano: FED1+, FED2+, FED3+, FED4, FED5, FED6, FED7, FED9, FED13, FED14, FED17.
- Swedish: FED1+, FED2+, FED3+, FED5, FED6, FED7.
- Portugues: FED1+, FED17
- Spanish: FED1+, FED2+, FED3+, FED17

Updates:

Update prices	EUR
Software Update (software Win32/64 + pdf manual)	40
Software Update (software 64-bit Win + pdf manual)	50

Update Mechanical Engineering Package: 800 EUR, Update Complete Package: 1000 EUR Maintenance contract for free updates: annual fee: 150 EUR + 40 EUR per program

Hexagon Software Network Licenses

Floating License in the time-sharing manner by integrated license manager Individual licenses may not be installed in a network!

Conditions for delivery and payment

General packaging and postage costs for delivery on CD-ROM: EUR 60, (EUR 25 inside Europe) Delivery by Email or download (zip file, manual as pdf files): EUR 0. Conditions of payment: bank transfer in advance with 2% discount, or by credit card (Master, Visa) net.

Key Code

After installation, software has to be released by key code. Key codes will be sent after receipt of payment.

HEXAGON Industriesoftware GmbH

Stiegelstrasse 8	D-73230 K	Irchheim	Tel. +49 7021 595	578, Fax +49 7021 59986
Kieler Strasse 1A	D-10115	Berlin	Mühlstr. 13	D-73272 Neidlingen
Mobile: +49 163 7	342509	E-Mail:	info@hexagon.de	Web: http://www.hexagon.de